% [%‘] UNIVERSITY OF
USTAINABLE ==
AVIATION ¥ TORONTO

AVIATION BIOFUELS

Life Cycle Perspective

UTIAS Colloquium on Sustainable Aviation 2013

Prof. Heather L. MacLean
Prof. Bradley A. Saville,
Pei Lin Chu & Katherine Rispoli



GLOBAL ISSUES — AVIATION INDUSTRY

RISING FUEL PRICES
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GLOBAL CLIMATE CHANGE

AVIATION CONTRIBUTES 2-3% OF
GREENHOUSE GAS EMISSIONS
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WORLD FUEL CONSUMPTION

e Jet fuel
— 1.5-1.7 billion barrels of Jet A-1/yr (~250 billion L)

* Motor gasoline

— 7.3 billion barrels



AVIATION BIOFUELS & POLICY

EMISSIONS * EU Emissions Trading Scheme
ALLOWANCES ( ETS)

(\ — Emission allowances allocated to
industrial operators

— Allowances can be traded among
operators exceeding or under
allocated emissions

— All flights in/out of the EU
included as of 2012

$$$ PROJECTED COST TO AIRLINES
€ 3.0-4.7 BILLION BY 2015



SOLUTIONS

Reduce Fuel Consumption
* Improved Aircraft Design
* Improved Operations

With Projected Air Traffic Increase:
* Need much greater reduction in
carbon footprint to meet targets and
reduce costs



SOLUTIONS

“Frozen technology™ emissions
Known technology, operations and infrastructure

O measures No action
.C 0.2 (] Biofuels and additional technology '
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AVIATION BIOFUELS

ALGAE

* High oil yield per unit area

e Rapid growth

* Does not require arable
land

* Cost-prohibitive
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* Marginal land
* Low agricultural input
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climate required
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AVIATION BIOFUELS

OIL FEEDSTOCK LIGNOCELLULOSIC FEEDSTOCK
QOil Extraction Gasification
Hydrotreatmgnt Fischer-Tropsch Synthesis
Hydrocracking Hydrocracking
Separation Separation
Hydroprocessed Esters FT PATHWAY
and Fatty Acids (HEFA)
PATHWAY

v v

BIO- SYNTHETIC PARAFFINIC KEROSENE
(Bio-SPK)



AVIATION BIOFUELS PROPERTIES

e ASTM Standard

Jet A FT-SPK HEFA-SPK
ASTM STANDARD D1655 D7566
Acidity, total mg KOH/g max 0.1 0.015 0.015
Aromatics, vol% max 25 0.5 (mass%) 0.5 (mass%)
Carbon & Hydrogen, mass% min 99.5 99.5
Flash point, °C min 38 38 38
Density at 15 °C, kg/m3 min 775-840 730-770 730-770
Freezing point. °C max -40 -40 -40
Heat content, MJ/kg 42.8
Water content, mg/kg max 75 75

50-50% blend approved




QUANTIFYING EMISSIONS REDUCTIONS

* Requires standardized metric

— Life cycle assessment (LCA)

* Cradle-to-grave assessment of environmental impacts

* Standardized framework (1ISO 14040 & ISO 14044)

— Goal & Scope

— Inventory Analysis
— Impact Assessment
— Interpretation



LCA — System Boundary

 For aviation biofuels:
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LCA — System Boundary
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LCA — Inventory & Interpretation

e LCA tools

— Greenhouse Gases, Regulated Emissions, and
Energy Use in Transportation Model (GREET)

— GHGenius
— SimaPro
* |[nventory Analysis
— Compilation of emissions data
— Normalization of data to relate goal and scope



LCA — Inventory & Interpretation

* Impact Assessment

— Environmental impact categories:

* e.g. Global Warming Potential (GWP), Acidification Potential (AP),
Eutrophication Potential (EP), Human Toxicity Potential (HTP)

e Classification of Emissions
— e.g. assigning CO,, CH, and N,O emissions to GWP



LCA — Inventory & Interpretation

* Normalization to allow comparison

— Expressing potential impacts to allow comparison
e.g. comparing GWP of CO, and CH,
* Weighting of impacts
— Determining crucial potential impacts

e Evaluation and documentation

— Verification of result accuracy and proper
documentation



LCA — RESULTS FOR BIOFUELS VARY

FACTOR 2: FEEDSTOCK

FACTOR 3: CO-PRODUCTS

Ibs CO;/gallon gasoline equivelent
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LCA — CO-PRODUCTS

—> BIOFUEL

—> ELECTRICITY

FEEDSTOCK

(e.g. Switchgrass)

COAL POWER PLANT




LIFE CYCLE ASSESSMENT

Case study 1 — LCA for US biojet production

100

g Co2 e/M! biojet fuel

B Carbon credit refinery
co-products

M Refinery process energy use

M Refinery process catalyst

B Carbon credit farming co-

products
M Farming process fossil fuel

use
M Fertilizer and chemical use

B Land carbon net emissions

Source: Adapted from Augusdinata, 2011



LIFE CYCLE ASSESSMENT

Case study 2 — LCA results compared to

petroleum jet

GHG Emisiions, normalized to crude
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FUTURE WORK

* Strengthen economic assessments

* Feedstock development
— e.g. cameling, carinata, algae
— Understand yields, energy and fertilizer demand...
— Develop/assess co-products
* Conversion technology evaluation
— e.g. pyrolysis, HEFA, FT, carbohydrates to alkanes
* Assessment of other metrics
— e.g. freshwater demand, cost-effectiveness
— Other emissions



CONCLUSION

 LCA s a tool for quantification of environmental
Impacts

e Evaluate available options and impact of choice of
action

— for better or for worse
* |dentify areas for improvement
* Quantify uncertainty/variability in performance

e Can be coupled with economic evaluation when
making decision

* Provide guidance to policymakers and other decision
makers
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Currently Used & Potential Resources: U.S.
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Currently Used & Potential Resources: U.S.
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